首页> 外文OA文献 >Cerebral Blood Volume Measurements – Gd_DTPA vs. VASO - and Their Relationship with Cerebral Blood Flow in Activated Human Visual Cortex
【2h】

Cerebral Blood Volume Measurements – Gd_DTPA vs. VASO - and Their Relationship with Cerebral Blood Flow in Activated Human Visual Cortex

机译:脑血容量测量– Gd_DTPA与VASO的关系及其与激活的人类视觉皮层中脑血流量的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Measurements of task-induced changes in cerebral blood volume (CBV) have been demonstrated using VAscular Space Occupancy (VASO) techniques (noninvasive and newly developed) and a contrast agent-based (Gd- DTPA) method (invasive but well-established) with functional magnetic resonance imaging (fMRI). We compared the two methods in determining CBV changes during multi-frequency visual stimulation (4 and 8 Hz). Specifically, we aimed to assess the impact of repetition time (TR) on CBV changes determination using VASO. With additional measurements of cerebral blood flow (CBF), the flow-volume coupling relationship (α value) and cerebral metabolic rate of oxygen were further determined. The results showed that i) using VASO, short TR (2s) caused overestimation of CBV changes, while long TR (6s) generated consistent CBV results, by comparison to the GD-DTPA method; ii) overestimation of CBV changes caused underestimated CMRO2 changes, but did not alter the frequency-related pattern, i.e., CMRO2 changes at 4 Hz were greater than those at 8 Hz regardless of the TR; and iii) the tasked-induced CBF-CBV coupling was stimulus frequency-dependent, i.e., α = 0.35-0.38 at 4 Hz and α = 0.51-0.53 at 8 Hz. Our data demonstrated that, with carefully chosen TRs, CBV measurements can be achieved non-invasively with VASO techniques.
机译:使用血管空间占用(VASO)技术(非侵入性和新近开发)和基于造影剂(Gd-DTPA)的方法(侵入性但行之有效的)已经证明了任务诱发的脑血容量(CBV)变化的测量。功能磁共振成像(fMRI)。我们比较了确定多频视觉刺激(4和8 Hz)期间CBV变化的两种方法。具体来说,我们旨在评估重复时间(TR)对使用VASO确定CBV变化的影响。通过额外测量脑血流量(CBF),进一步确定了血流体积耦合关系(α值)和脑氧代谢率。结果表明:i)与GD-DTPA方法相比,使用VASO,短TR(2s)导致CBV变化的高估,而长TR(6s)产生一致的CBV结果; ii)高估CBV的变化会导致CMRO2的变化被低估,但是并没有改变与频率相关的模式,即无论TR如何,在4 Hz时CMRO2的变化都大于在8 Hz时的变化; iii)任务诱导的CBF-CBV耦合取决于刺激频率,即4 Hz时α= 0.35-0.38,8 Hz时α= 0.51-0.53。我们的数据表明,通过精心选择的TR,可以使用VASO技术无创地实现CBV测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号